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ABSTRACT

A time-domain finite-difference approach based on the
expression of the field vectors by the vector potential func-
tions is proposed for the analysis of planar structures. The
algorithm is theoretically equivalent to the time-domain
integral equations (TDIE) approach but is much faster
because the calculation of the vector potentials is carried
out by the finite-difference wave equation instead of inte-
gration. Still integration can be involved when electrically
remote objects are present. Only four tangential to the
planar interfaces components of the vector potentials are
calculated which makes this algorithm advantegous to the
FDTD one in respect with storage requirements.

I. INTRODUCTION

Time-domain integral equation (TDIE) approaches
were intensively studied and applied to a variety of tran-
sient (mainly scattering) problems until Finite-Difference
Time-Domain (FDTD) approach was established as a far
more efficient and universal way to treat transient fields.
TDIE imposed high requirements in respect with CPU
time. Besides, they displayed certain problems concerning
stability, especially when it comes to electrically thin scat-
terers ([1],[2]) where the magnetic-field integral equation
is entirely unsuitable and the elctric-field integral equa-
tion poses numerical problems which is typical for a Fred-
holm equation of the first kind. Still TDIE have certain
advantages - they reduce a 3-D problem to a 2-D one
and present a natural way of solving radiation conditions.
Recently publications appeared which show successful at-
tempts to combine the advantages of finite-difference tech-
niques with the integral-equation approach [3],[4],[5],[12].

This paper presents a numerical algorithm which com-
bines the advantages of finite-difference schemes with the
TDIE approach when applied to planar structures. The
approach is a boundary-value one and is based on the
surface MFIE and EFIE expressed in terms of vector po-
tentials (VP). At every surface point only four tangen-
tial field components are calculated to give the values of
the equivalent surface currents exciting the respective four
tangential VP components. The VPs are calculated either
by direct integration or by the finite-difference wave equa-
tion. Both approaches can be combined according to the
geometry of the structure. The second approach is much
faster and requires the storage of only four VP compo-
nents’ values at every space point but needs a radiation
boundary condition when open structures are involved.

A numerical absorbing region has been developed to cal-
culate exactly the boundary values of the 3-D numerical
domain of the wave equation.

The consistency of the method has been proved by
simulations of Gaussian pulse propagation in a homoge-
neous and an open-end microstrip line. The frequency
dependent reflection coefficient of the open-end disconti-
nuity has been calculated. A scattering from a square
thin-plate has been also simulated for a Gaussian-pulse
incident wave.

II. BASIC EQUATIONS
1. Time-domain vector-potential equations.
From Maxwell equations it follows that the field vec-

tors £ and H can be represented by the magnetic VP

%_1), the electric VP F and the respective scalar potential
functions, ¢ and 1, as:
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When both magnetic and electric Currents,[{; and J. , are

present, Fand A satisfy the two inhomogeneous wave
equations:

L1 0%F .
F— EW = —cK (3)
L1 9%A .

AA - 2o —pd, (4)

if the scalar potential functions are related to the VP func-
tions by the Lorentz gauge condition:

% -

.2
o = vV (5)
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Here v is the velocity of light. The free-space solutions
of the wave equations for the VP when both surface and
volume currents are present are:

— [_; , T [_;5 , T
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Figure 1: Space displacement of surface currents.
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where:

R is the distance between the observation point P and
the integration point ();

7 =1 — R/v is the retarded time.

The above equations,when substituted in ( 1, 2), can be
conveniently applied to the solution of boundary - value
problems when the equivalence principle is applied. Ac-
cording to the equivalence principle, the region of inter-
est is confined within a surface, the outer fields being as-
sumed equal to zero. Their impact on the internal field
is replaced by equivalent sources (surface currents) which
satisfy the conditions:

= J; 9)
= —K, (10)
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where:
n is the inward normal of the boundary surface;

Ei’,ﬁ are the field vectors at the boundary.

The equivalent sources’ contribution is as if they radiate
in free space with the dielectric permittivity ; and mag-
netic permeability g, of the region of interest (i). Thus,
the time-domain boundary integral equation for the tan-
gential field components at the boundary (which are now
expressed as equivalent currents) can be obtained. The
singularity of the VP functions at surface currents’ planes
must be considered because the third (curl of the VP)
member in equations ( 1, 2) as expressed with its Cauchy
principle value is [6]:

VX/S%dsz]évX [%] ds — 2x[ x J.].

Finally, introducing the incident fields contribution as
equivalent currents KT and jI, the basic equations for the
time-domain VP approach are obtained (the subscript
for surface currents will be omitted from now on):
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Figure 2: Thin plate scatterer at the air-to-dielectric in-
terface.
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Here (i) denotes the respective region. In the above equa-
tions it was assumed that there are no volume sources
within the region of interest. If there are any, the respec-
tive volume integrals should be included. Here all equiv-
alent surface currents in the right-hand side are functions
of (Q,7), where 7 =t — R/v;.

When treating dielectric-to-dielectric interfaces be-
tween two regions (¢ = 1 and ¢ = 2), equations ( 11, 12)
are coupled by the boundary conditions for their equiva-
lent currents:

KW = _K® (13)
U 1
In case of a conducting surface [{;5(1) = [;'5(2) = 0. The

equivalent electric currents, J_;(l) and J_;(z), which are now
actual currents, are decoupled. Equations ( 11) for each
region are multiplied by a coefficient «; (¢ = 1,2) and are
summed. Similar linear combination is applied to equa-
tions ( 12) with coefficients 3;. The choice of the ratios
a = aijf/az and f = [1/B; is a subject to certain re-
strictions (see [7],[8],[12]). In this case best results were
obtained with oy = ¢,, ay = &,,, B1 = plr,, B2 = fy,-
The electric currents at the conducting surfaces of each
region (¢) are calculated by the magnetic field equation

(12).

III. NUMERICAL IMPLEMENTATION
1. Discretization of the numerical space-time do-
main.

The electric currents and the magnetic currents are
displaced in time by a half-step which ensures correct
treatment of the time derivatives. For exact evaluation
of the space derivatives, V,V,. and V x, displacement in
space by a half-step is needed, too. The equivalent current
components, (JF+1/2, Kj) and (JFY2 KF) are located at
points displaced by a half-step along both y and z axes
(for a plane @ = const), (Fig.1). The components of A;

and F; are calculated at the points of the respective cur-
rents.
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Figure 3: J, component distribution at the thin plate
scatterer, e,, = 4,6 = T20At.

The time-step At and the space-step Ah are related
to the higher speed of light in the structure ¢ by:

_an
o

At (15)
where ¢ is chosen to be ¢ = 2 to ensure stability of the

explicit in time finite-difference scheme for the wave equa-
tion, [9]:

LAP{[E} — o3(JE¥ — 2 4 [57) = —4ngfAL  (16)

where:
O = q/Frifhr;
LAP = Ah?A is the finite-differenece 3-D Laplacian;
fe is the {-component of the VP (£ =y, z);
ge 1s the surface current component related to the respec-
tive VP component.
2. The transmitting boundary for the wave equa-
tion.
A field f which propagates in the 4z direction satisfies

the equation:
or 105 _

0z + vt
where v is the velocity of propagation in the respective
medium. Applying the leap-frog scheme [9] the finite-
difference approximation of ( 17) is obtained:

0, (17)

1
k+1/2 k—1/2
I = A = — (= ) (18)

where a* = Ah*/(vAt). Here ARh® is the space-step along
the direction of propagation in an additional absorbing

buffer region adjacent to the main region of the wave equa-
tion. The best performance of this scheme is achieved

when a* = 1. Therefore, the discretization step of the
main region Ah is greater than Ah%:
Ah
Ah® (19)

a G/ Erfly

where ¢, and p, are the constants of the relative medium.
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Figure 4: J, component distribution at the thin plate
scatterer, e,, = 4,6 = T20At.

IV. RESULTS AND DISCUSSION
Two types of simulations are presented - a scattering prob-
lem and a transmission line problem.
1. Scattering of an infinitesimally thin plate.

The scatterer is an infinitesimally thin square plate at
the interface between air (region 1) and dielectric (region
2) with dielectric constant ¢,,. Two simulations were car-
ried out - for ¢,, =1 and ¢,, = 4. The incident wave is a
Gaussian pulse in time. The presented results are for the
case of normal incidence. The time-response for the J,
component at a given reference point (point RP in Fig.2)
is presented to verify the field behaviour in time. The ref-
erence point is located three steps along the z-axis and one
step along the y-axis from the front-left corner of the plate.
The scattering plate’s size is A=16Ah (Ah = 0.6m).

A typical space distribution of the surface currents for
the case is presented in Fig.3, Fig.4. Fig.5 represents the
time-response for the total current component J, for both
g, = 1 and ¢, = 4 at the reference point RP. Here the total
current has been calculated as:

J=Ji+J,
The resonant character of the time-response is well seen,
as well as the influence of the dielectric layer on the reso-
nant frequency of the same patch. The frequency response
of the time-data for .J, are presented in Fig.6.
2. Open-end microstrip line.

The dispersive character of the reflection coefficient
Sy was investigated for the open-end discontinuity in a
microstrip line. The dimensions of the structure and the
dielectric constant of the substrate were chosen exactly
as in [11] to compare the results with those obtained by
FDTD method:

dielectric constant: ¢, = 9.6;

strip width: W = 0.6 mm;

substrate thickness: H = 0.6 mm.
Discretization step in space has been chosen Ah = W/8.
The dimensions of the whole numerical plane are:

length L = 140Ah;

width A = 30Ah;

height B = 3H.
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Figure 5: J, component time-response at reference point
RP. With lines - ¢,, = 1; with points - ¢,, = 4.
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Figure 6: J. component frequency-response at reference
point RP. With boxes - ¢,, = 1; with crosses - ¢,, = 4.

Fig. 7 shows the results for the magnitude of Sy, which
are in good agreement with those given in [11].

CONCLUSION

A new finite-difference time-domain approach for the
analysis of planar structures has been developed. It re-
duces the number of unknown field quantities to four tan-
gential components of the respective vector potentials,
thus, reducing memory and CPU time requirements in
comparison with FDTD method. The method is equally
well-suited for open and closed problems and allows for
both integration and finite-difference wave equation cal-
culation of the vector potentials. Further investigations
on improving the absorbing boundaries and increasing the
overall speed of the numerical algorithm can make it suit-
able for the analysis of far more complicated than the
considered ones planar structures.
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